kernel/process_loading.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Helper functions and machines for loading process binaries into in-memory
//! Tock processes.
//!
//! Process loaders are responsible for parsing the binary formats of Tock
//! processes, checking whether they are allowed to be loaded, and if so
//! initializing a process structure to run it.
//!
//! This module provides multiple process loader options depending on which
//! features a particular board requires.
use core::cell::Cell;
use core::fmt;
use crate::capabilities::ProcessManagementCapability;
use crate::config;
use crate::debug;
use crate::deferred_call::{DeferredCall, DeferredCallClient};
use crate::kernel::Kernel;
use crate::platform::chip::Chip;
use crate::process::{Process, ShortId};
use crate::process_binary::{ProcessBinary, ProcessBinaryError};
use crate::process_checker::AcceptedCredential;
use crate::process_checker::{AppIdPolicy, ProcessCheckError, ProcessCheckerMachine};
use crate::process_policies::ProcessFaultPolicy;
use crate::process_policies::ProcessStandardStoragePermissionsPolicy;
use crate::process_standard::ProcessStandard;
use crate::process_standard::{ProcessStandardDebug, ProcessStandardDebugFull};
use crate::utilities::cells::{MapCell, OptionalCell};
/// Errors that can occur when trying to load and create processes.
pub enum ProcessLoadError {
/// Not enough memory to meet the amount requested by a process. Modify the
/// process to request less memory, flash fewer processes, or increase the
/// size of the region your board reserves for process memory.
NotEnoughMemory,
/// A process was loaded with a length in flash that the MPU does not
/// support. The fix is probably to correct the process size, but this could
/// also be caused by a bad MPU implementation.
MpuInvalidFlashLength,
/// The MPU configuration failed for some other, unspecified reason. This
/// could be of an internal resource exhaustion, or a mismatch between the
/// (current) MPU constraints and process requirements.
MpuConfigurationError,
/// A process specified a fixed memory address that it needs its memory
/// range to start at, and the kernel did not or could not give the process
/// a memory region starting at that address.
MemoryAddressMismatch {
actual_address: u32,
expected_address: u32,
},
/// There is nowhere in the `PROCESSES` array to store this process.
NoProcessSlot,
/// Process loading failed because parsing the binary failed.
BinaryError(ProcessBinaryError),
/// Process loading failed because checking the process failed.
CheckError(ProcessCheckError),
/// Process loading error due (likely) to a bug in the kernel. If you get
/// this error please open a bug report.
InternalError,
}
impl fmt::Debug for ProcessLoadError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
ProcessLoadError::NotEnoughMemory => {
write!(f, "Not able to provide RAM requested by app")
}
ProcessLoadError::MpuInvalidFlashLength => {
write!(f, "App flash length not supported by MPU")
}
ProcessLoadError::MpuConfigurationError => {
write!(f, "Configuring the MPU failed")
}
ProcessLoadError::MemoryAddressMismatch {
actual_address,
expected_address,
} => write!(
f,
"App memory does not match requested address Actual:{:#x}, Expected:{:#x}",
actual_address, expected_address
),
ProcessLoadError::NoProcessSlot => {
write!(f, "Nowhere to store the loaded process")
}
ProcessLoadError::BinaryError(binary_error) => {
writeln!(f, "Error parsing process binary")?;
write!(f, "{:?}", binary_error)
}
ProcessLoadError::CheckError(check_error) => {
writeln!(f, "Error checking process")?;
write!(f, "{:?}", check_error)
}
ProcessLoadError::InternalError => write!(f, "Error in kernel. Likely a bug."),
}
}
}
////////////////////////////////////////////////////////////////////////////////
// SYNCHRONOUS PROCESS LOADING
////////////////////////////////////////////////////////////////////////////////
/// Load processes into runnable process structures.
///
/// Load processes (stored as TBF objects in flash) into runnable process
/// structures stored in the `procs` array and mark all successfully loaded
/// processes as runnable. This method does not check the cryptographic
/// credentials of TBF objects. Platforms for which code size is tight and do
/// not need to check TBF credentials can call this method because it results in
/// a smaller kernel, as it does not invoke the credential checking state
/// machine.
///
/// This function is made `pub` so that board files can use it, but loading
/// processes from slices of flash an memory is fundamentally unsafe. Therefore,
/// we require the `ProcessManagementCapability` to call this function.
// Mark inline always to reduce code size. Since this is only called in one
// place (a board's main.rs), by inlining the load_*processes() functions, the
// compiler can elide many checks which reduces code size appreciably. Note,
// however, these functions require a rather large stack frame, which may be an
// issue for boards small kernel stacks.
#[inline(always)]
pub fn load_processes<C: Chip>(
kernel: &'static Kernel,
chip: &'static C,
app_flash: &'static [u8],
app_memory: &'static mut [u8],
mut procs: &'static mut [Option<&'static dyn Process>],
fault_policy: &'static dyn ProcessFaultPolicy,
_capability_management: &dyn ProcessManagementCapability,
) -> Result<(), ProcessLoadError> {
load_processes_from_flash::<C, ProcessStandardDebugFull>(
kernel,
chip,
app_flash,
app_memory,
&mut procs,
fault_policy,
)?;
if config::CONFIG.debug_process_credentials {
debug!("Checking: no checking, load and run all processes");
}
for proc in procs.iter() {
proc.map(|p| {
if config::CONFIG.debug_process_credentials {
debug!("Running {}", p.get_process_name());
}
});
}
Ok(())
}
/// Helper function to load processes from flash into an array of active
/// processes. This is the default template for loading processes, but a board
/// is able to create its own `load_processes()` function and use that instead.
///
/// Processes are found in flash starting from the given address and iterating
/// through Tock Binary Format (TBF) headers. Processes are given memory out of
/// the `app_memory` buffer until either the memory is exhausted or the
/// allocated number of processes are created. This buffer is a non-static slice,
/// ensuring that this code cannot hold onto the slice past the end of this function
/// (instead, processes store a pointer and length), which necessary for later
/// creation of `ProcessBuffer`s in this memory region to be sound.
/// A reference to each process is stored in the provided `procs` array.
/// How process faults are handled by the
/// kernel must be provided and is assigned to every created process.
///
/// Returns `Ok(())` if process discovery went as expected. Returns a
/// `ProcessLoadError` if something goes wrong during TBF parsing or process
/// creation.
#[inline(always)]
fn load_processes_from_flash<C: Chip, D: ProcessStandardDebug + 'static>(
kernel: &'static Kernel,
chip: &'static C,
app_flash: &'static [u8],
app_memory: &'static mut [u8],
procs: &mut &'static mut [Option<&'static dyn Process>],
fault_policy: &'static dyn ProcessFaultPolicy,
) -> Result<(), ProcessLoadError> {
if config::CONFIG.debug_load_processes {
debug!(
"Loading processes from flash={:#010X}-{:#010X} into sram={:#010X}-{:#010X}",
app_flash.as_ptr() as usize,
app_flash.as_ptr() as usize + app_flash.len() - 1,
app_memory.as_ptr() as usize,
app_memory.as_ptr() as usize + app_memory.len() - 1
);
}
let mut remaining_flash = app_flash;
let mut remaining_memory = app_memory;
// Try to discover up to `procs.len()` processes in flash.
let mut index = 0;
let num_procs = procs.len();
while index < num_procs {
let load_binary_result = discover_process_binary(remaining_flash);
match load_binary_result {
Ok((new_flash, process_binary)) => {
remaining_flash = new_flash;
let load_result = load_process::<C, D>(
kernel,
chip,
process_binary,
remaining_memory,
ShortId::LocallyUnique,
index,
fault_policy,
&(),
);
match load_result {
Ok((new_mem, proc)) => {
remaining_memory = new_mem;
match proc {
Some(p) => {
if config::CONFIG.debug_load_processes {
debug!("Loaded process {}", p.get_process_name())
}
procs[index] = proc;
index += 1;
}
None => {
if config::CONFIG.debug_load_processes {
debug!("No process loaded.");
}
}
}
}
Err((new_mem, err)) => {
remaining_memory = new_mem;
if config::CONFIG.debug_load_processes {
debug!("Processes load error: {:?}.", err);
}
}
}
}
Err((new_flash, err)) => {
remaining_flash = new_flash;
match err {
ProcessBinaryError::NotEnoughFlash | ProcessBinaryError::TbfHeaderNotFound => {
if config::CONFIG.debug_load_processes {
debug!("No more processes to load: {:?}.", err);
}
// No more processes to load.
break;
}
ProcessBinaryError::TbfHeaderParseFailure(_)
| ProcessBinaryError::IncompatibleKernelVersion { .. }
| ProcessBinaryError::IncorrectFlashAddress { .. }
| ProcessBinaryError::NotEnabledProcess
| ProcessBinaryError::Padding => {
if config::CONFIG.debug_load_processes {
debug!("Unable to use process binary: {:?}.", err);
}
// Skip this binary and move to the next one.
continue;
}
}
}
}
}
Ok(())
}
////////////////////////////////////////////////////////////////////////////////
// HELPER FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
/// Find a process binary stored at the beginning of `flash` and create a
/// `ProcessBinary` object if the process is viable to run on this kernel.
fn discover_process_binary(
flash: &'static [u8],
) -> Result<(&'static [u8], ProcessBinary), (&'static [u8], ProcessBinaryError)> {
if config::CONFIG.debug_load_processes {
debug!(
"Looking for process binary in flash={:#010X}-{:#010X}",
flash.as_ptr() as usize,
flash.as_ptr() as usize + flash.len() - 1
);
}
// If this fails, not enough remaining flash to check for an app.
let test_header_slice = flash
.get(0..8)
.ok_or((flash, ProcessBinaryError::NotEnoughFlash))?;
// Pass the first eight bytes to tbfheader to parse out the length of
// the tbf header and app. We then use those values to see if we have
// enough flash remaining to parse the remainder of the header.
//
// Start by converting [u8] to [u8; 8].
let header = test_header_slice
.try_into()
.or(Err((flash, ProcessBinaryError::NotEnoughFlash)))?;
let (version, header_length, app_length) =
match tock_tbf::parse::parse_tbf_header_lengths(header) {
Ok((v, hl, el)) => (v, hl, el),
Err(tock_tbf::types::InitialTbfParseError::InvalidHeader(app_length)) => {
// If we could not parse the header, then we want to skip over
// this app and look for the next one.
(0, 0, app_length)
}
Err(tock_tbf::types::InitialTbfParseError::UnableToParse) => {
// Since Tock apps use a linked list, it is very possible the
// header we started to parse is intentionally invalid to signal
// the end of apps. This is ok and just means we have finished
// loading apps.
return Err((flash, ProcessBinaryError::TbfHeaderNotFound));
}
};
// Now we can get a slice which only encompasses the length of flash
// described by this tbf header. We will either parse this as an actual
// app, or skip over this region.
let app_flash = flash
.get(0..app_length as usize)
.ok_or((flash, ProcessBinaryError::NotEnoughFlash))?;
// Advance the flash slice for process discovery beyond this last entry.
// This will be the start of where we look for a new process since Tock
// processes are allocated back-to-back in flash.
let remaining_flash = flash
.get(app_flash.len()..)
.ok_or((flash, ProcessBinaryError::NotEnoughFlash))?;
let pb = ProcessBinary::create(app_flash, header_length as usize, version, true)
.map_err(|e| (remaining_flash, e))?;
Ok((remaining_flash, pb))
}
/// Load a process stored as a TBF process binary with `app_memory` as the RAM
/// pool that its RAM should be allocated from. Returns `Ok` if the process
/// object was created, `Err` with a relevant error if the process object could
/// not be created.
fn load_process<C: Chip, D: ProcessStandardDebug>(
kernel: &'static Kernel,
chip: &'static C,
process_binary: ProcessBinary,
app_memory: &'static mut [u8],
app_id: ShortId,
index: usize,
fault_policy: &'static dyn ProcessFaultPolicy,
storage_policy: &'static dyn ProcessStandardStoragePermissionsPolicy<C, D>,
) -> Result<(&'static mut [u8], Option<&'static dyn Process>), (&'static mut [u8], ProcessLoadError)>
{
if config::CONFIG.debug_load_processes {
debug!(
"Loading: process flash={:#010X}-{:#010X} ram={:#010X}-{:#010X}",
process_binary.flash.as_ptr() as usize,
process_binary.flash.as_ptr() as usize + process_binary.flash.len() - 1,
app_memory.as_ptr() as usize,
app_memory.as_ptr() as usize + app_memory.len() - 1
);
}
// Need to reassign remaining_memory in every iteration so the compiler
// knows it will not be re-borrowed.
// If we found an actual app header, try to create a `Process`
// object. We also need to shrink the amount of remaining memory
// based on whatever is assigned to the new process if one is
// created.
// Try to create a process object from that app slice. If we don't
// get a process and we didn't get a loading error (aka we got to
// this point), then the app is a disabled process or just padding.
let (process_option, unused_memory) = unsafe {
ProcessStandard::<C, D>::create(
kernel,
chip,
process_binary,
app_memory,
fault_policy,
storage_policy,
app_id,
index,
)
.map_err(|(e, memory)| (memory, e))?
};
process_option.map(|process| {
if config::CONFIG.debug_load_processes {
debug!(
"Loading: {} [{}] flash={:#010X}-{:#010X} ram={:#010X}-{:#010X}",
process.get_process_name(),
index,
process.get_addresses().flash_start,
process.get_addresses().flash_end,
process.get_addresses().sram_start,
process.get_addresses().sram_end - 1,
);
}
});
Ok((unused_memory, process_option))
}
////////////////////////////////////////////////////////////////////////////////
// ASYNCHRONOUS PROCESS LOADING
////////////////////////////////////////////////////////////////////////////////
/// Client for asynchronous process loading.
///
/// This supports a client that is notified after trying to load each process in
/// flash. Also there is a callback for after all processes have been
/// discovered.
pub trait ProcessLoadingAsyncClient {
/// A process was successfully found in flash, checked, and loaded into a
/// `ProcessStandard` object.
fn process_loaded(&self, result: Result<(), ProcessLoadError>);
/// There are no more processes in flash to be loaded.
fn process_loading_finished(&self);
}
/// Asynchronous process loading.
///
/// Machines which implement this trait perform asynchronous process loading and
/// signal completion through `ProcessLoadingAsyncClient`.
///
/// Various process loaders may exist. This includes a loader from a MCU's
/// integrated flash, or a loader from an external flash chip.
pub trait ProcessLoadingAsync<'a> {
/// Set the client to receive callbacks about process loading and when
/// process loading has finished.
fn set_client(&self, client: &'a dyn ProcessLoadingAsyncClient);
/// Set the credential checking policy for the loader.
fn set_policy(&self, policy: &'a dyn AppIdPolicy);
/// Start the process loading operation.
fn start(&self);
}
/// Operating mode of the loader.
#[derive(Clone, Copy)]
enum SequentialProcessLoaderMachineState {
/// Phase of discovering `ProcessBinary` objects in flash.
DiscoverProcessBinaries,
/// Phase of loading `ProcessBinary`s into `Process`es.
LoadProcesses,
}
/// Operating mode of the sequential process loader.
///
/// The loader supports loading processes from flash at boot, and loading processes
/// that were written to flash dynamically at runtime. Most of the internal logic is the
/// same (and therefore reused), but we need to track which mode of operation the
/// loader is in.
#[derive(Clone, Copy)]
enum SequentialProcessLoaderMachineRunMode {
/// The loader was called by a board's main function at boot.
BootMode,
/// The loader was called by a dynamic process loader at runtime.
RuntimeMode,
}
/// Enum to hold the padding requirements for a new application.
#[derive(Clone, Copy, PartialEq, Default)]
pub enum PaddingRequirement {
#[default]
None,
PrePad,
PostPad,
PreAndPostPad,
}
/// A machine for loading processes stored sequentially in a region of flash.
///
/// Load processes (stored as TBF objects in flash) into runnable process
/// structures stored in the `procs` array. This machine scans the footers in
/// the TBF for cryptographic credentials for binary integrity, passing them to
/// the checker to decide whether the process has sufficient credentials to run.
pub struct SequentialProcessLoaderMachine<'a, C: Chip + 'static, D: ProcessStandardDebug + 'static>
{
/// Client to notify as processes are loaded and process loading finishes after boot.
boot_client: OptionalCell<&'a dyn ProcessLoadingAsyncClient>,
/// Client to notify as processes are loaded and process loading finishes during runtime.
runtime_client: OptionalCell<&'a dyn ProcessLoadingAsyncClient>,
/// Machine to use to check process credentials.
checker: &'static ProcessCheckerMachine,
/// Array of stored process references for loaded processes.
procs: MapCell<&'static mut [Option<&'static dyn Process>]>,
/// Array to store `ProcessBinary`s after checking credentials.
proc_binaries: MapCell<&'static mut [Option<ProcessBinary>]>,
/// Total available flash for process binaries on this board.
flash_bank: Cell<&'static [u8]>,
/// Flash memory region to load processes from.
flash: Cell<&'static [u8]>,
/// Memory available to assign to applications.
app_memory: Cell<&'static mut [u8]>,
/// Mechanism for generating async callbacks.
deferred_call: DeferredCall,
/// Reference to the kernel object for creating Processes.
kernel: &'static Kernel,
/// Reference to the Chip object for creating Processes.
chip: &'static C,
/// The policy to use when determining ShortIds and process uniqueness.
policy: OptionalCell<&'a dyn AppIdPolicy>,
/// The fault policy to assign to each created Process.
fault_policy: &'static dyn ProcessFaultPolicy,
/// The storage permissions policy to assign to each created Process.
storage_policy: &'static dyn ProcessStandardStoragePermissionsPolicy<C, D>,
/// Current mode of the loading machine.
state: OptionalCell<SequentialProcessLoaderMachineState>,
/// Current operating mode of the loading machine.
run_mode: OptionalCell<SequentialProcessLoaderMachineRunMode>,
}
impl<'a, C: Chip, D: ProcessStandardDebug> SequentialProcessLoaderMachine<'a, C, D> {
/// This function is made `pub` so that board files can use it, but loading
/// processes from slices of flash an memory is fundamentally unsafe.
/// Therefore, we require the `ProcessManagementCapability` to call this
/// function.
pub fn new(
checker: &'static ProcessCheckerMachine,
procs: &'static mut [Option<&'static dyn Process>],
proc_binaries: &'static mut [Option<ProcessBinary>],
kernel: &'static Kernel,
chip: &'static C,
flash: &'static [u8],
app_memory: &'static mut [u8],
fault_policy: &'static dyn ProcessFaultPolicy,
storage_policy: &'static dyn ProcessStandardStoragePermissionsPolicy<C, D>,
policy: &'static dyn AppIdPolicy,
_capability_management: &dyn ProcessManagementCapability,
) -> Self {
Self {
deferred_call: DeferredCall::new(),
checker,
boot_client: OptionalCell::empty(),
runtime_client: OptionalCell::empty(),
run_mode: OptionalCell::empty(),
procs: MapCell::new(procs),
proc_binaries: MapCell::new(proc_binaries),
kernel,
chip,
flash_bank: Cell::new(flash),
flash: Cell::new(flash),
app_memory: Cell::new(app_memory),
policy: OptionalCell::new(policy),
fault_policy,
storage_policy,
state: OptionalCell::empty(),
}
}
/// Set the runtime client to receive callbacks about process loading and when
/// process loading has finished.
pub fn set_runtime_client(&self, client: &'a dyn ProcessLoadingAsyncClient) {
self.runtime_client.set(client);
}
/// Find the current active client based on the operation mode.
fn get_current_client(&self) -> Option<&dyn ProcessLoadingAsyncClient> {
match self.run_mode.get()? {
SequentialProcessLoaderMachineRunMode::BootMode => self.boot_client.get(),
SequentialProcessLoaderMachineRunMode::RuntimeMode => self.runtime_client.get(),
}
}
/// Find a slot in the `PROCESSES` array to store this process.
fn find_open_process_slot(&self) -> Option<usize> {
self.procs.map_or(None, |procs| {
for (i, p) in procs.iter().enumerate() {
if p.is_none() {
return Some(i);
}
}
None
})
}
/// Find a slot in the `PROCESS_BINARIES` array to store this process.
fn find_open_process_binary_slot(&self) -> Option<usize> {
self.proc_binaries.map_or(None, |proc_bins| {
for (i, p) in proc_bins.iter().enumerate() {
if p.is_none() {
return Some(i);
}
}
None
})
}
fn load_and_check(&self) {
let ret = self.discover_process_binary();
match ret {
Ok(pb) => match self.checker.check(pb) {
Ok(()) => {}
Err(e) => {
self.get_current_client().map(|client| {
client.process_loaded(Err(ProcessLoadError::CheckError(e)));
});
}
},
Err(ProcessBinaryError::NotEnoughFlash)
| Err(ProcessBinaryError::TbfHeaderNotFound) => {
// These two errors occur when there are no more app binaries in
// flash. Now we can move to actually loading process binaries
// into full processes.
self.state
.set(SequentialProcessLoaderMachineState::LoadProcesses);
self.deferred_call.set();
}
Err(e) => {
if config::CONFIG.debug_load_processes {
debug!("Loading: unable to create ProcessBinary: {:?}", e);
}
// Other process binary errors indicate the process is not
// compatible. Signal error and try the next item in flash.
self.get_current_client().map(|client| {
client.process_loaded(Err(ProcessLoadError::BinaryError(e)));
});
self.deferred_call.set();
}
}
}
/// Try to parse a process binary from flash.
///
/// Returns the process binary object or an error if a valid process
/// binary could not be extracted.
fn discover_process_binary(&self) -> Result<ProcessBinary, ProcessBinaryError> {
let flash = self.flash.get();
if config::CONFIG.debug_load_processes {
debug!(
"Looking for process binary in flash={:#010X}-{:#010X}",
flash.as_ptr() as usize,
flash.as_ptr() as usize + flash.len() - 1
);
}
// If this fails, not enough remaining flash to check for an app.
let test_header_slice = flash.get(0..8).ok_or(ProcessBinaryError::NotEnoughFlash)?;
// Pass the first eight bytes to tbfheader to parse out the length of
// the tbf header and app. We then use those values to see if we have
// enough flash remaining to parse the remainder of the header.
//
// Start by converting [u8] to [u8; 8].
let header = test_header_slice
.try_into()
.or(Err(ProcessBinaryError::NotEnoughFlash))?;
let (version, header_length, app_length) =
match tock_tbf::parse::parse_tbf_header_lengths(header) {
Ok((v, hl, el)) => (v, hl, el),
Err(tock_tbf::types::InitialTbfParseError::InvalidHeader(app_length)) => {
// If we could not parse the header, then we want to skip over
// this app and look for the next one.
(0, 0, app_length)
}
Err(tock_tbf::types::InitialTbfParseError::UnableToParse) => {
// Since Tock apps use a linked list, it is very possible the
// header we started to parse is intentionally invalid to signal
// the end of apps. This is ok and just means we have finished
// loading apps.
return Err(ProcessBinaryError::TbfHeaderNotFound);
}
};
// Now we can get a slice which only encompasses the length of flash
// described by this tbf header. We will either parse this as an actual
// app, or skip over this region.
let app_flash = flash
.get(0..app_length as usize)
.ok_or(ProcessBinaryError::NotEnoughFlash)?;
// Advance the flash slice for process discovery beyond this last entry.
// This will be the start of where we look for a new process since Tock
// processes are allocated back-to-back in flash.
let remaining_flash = flash
.get(app_flash.len()..)
.ok_or(ProcessBinaryError::NotEnoughFlash)?;
self.flash.set(remaining_flash);
let pb = ProcessBinary::create(app_flash, header_length as usize, version, true)?;
Ok(pb)
}
/// Create process objects from the discovered process binaries.
///
/// This verifies that the discovered processes are valid to run.
fn load_process_objects(&self) -> Result<(), ()> {
let proc_binaries = self.proc_binaries.take().ok_or(())?;
let proc_binaries_len = proc_binaries.len();
// Iterate all process binary entries.
for i in 0..proc_binaries_len {
// We are either going to load this process binary or discard it, so
// we can use `take()` here.
if let Some(process_binary) = proc_binaries[i].take() {
// We assume the process can be loaded. This is not the case
// if there is a conflicting process.
let mut ok_to_load = true;
// Start by iterating all other process binaries and seeing
// if any are in conflict (same AppID with newer version).
for proc_bin in proc_binaries.iter() {
match proc_bin {
Some(other_process_binary) => {
let blocked = self
.is_blocked_from_loading_by(&process_binary, other_process_binary);
if blocked {
ok_to_load = false;
break;
}
}
None => {}
}
}
// Go to next ProcessBinary if we cannot load this process.
if !ok_to_load {
continue;
}
// Now scan the already loaded processes and make sure this
// doesn't conflict with any of those. Since those processes
// are already loaded, we just need to check if this process
// binary has the same AppID as an already loaded process.
self.procs.map(|procs| {
for proc in procs.iter() {
match proc {
Some(p) => {
let blocked =
self.is_blocked_from_loading_by_process(&process_binary, *p);
if blocked {
ok_to_load = false;
break;
}
}
None => {}
}
}
});
if !ok_to_load {
continue;
}
// If we get here it is ok to load the process.
match self.find_open_process_slot() {
Some(index) => {
// Calculate the ShortId for this new process.
let short_app_id = self.policy.map_or(ShortId::LocallyUnique, |policy| {
policy.to_short_id(&process_binary)
});
// Try to create a `Process` object.
let load_result = load_process(
self.kernel,
self.chip,
process_binary,
self.app_memory.take(),
short_app_id,
index,
self.fault_policy,
self.storage_policy,
);
match load_result {
Ok((new_mem, proc)) => {
self.app_memory.set(new_mem);
match proc {
Some(p) => {
if config::CONFIG.debug_load_processes {
debug!(
"Loading: Loaded process {}",
p.get_process_name()
)
}
// Store the `ProcessStandard` object in the `PROCESSES`
// array.
self.procs.map(|procs| {
procs[index] = proc;
});
// Notify the client the process was loaded
// successfully.
self.get_current_client().map(|client| {
client.process_loaded(Ok(()));
});
}
None => {
if config::CONFIG.debug_load_processes {
debug!("No process loaded.");
}
}
}
}
Err((new_mem, err)) => {
self.app_memory.set(new_mem);
if config::CONFIG.debug_load_processes {
debug!("Could not load process: {:?}.", err);
}
self.get_current_client().map(|client| {
client.process_loaded(Err(err));
});
}
}
}
None => {
// Nowhere to store the process.
self.get_current_client().map(|client| {
client.process_loaded(Err(ProcessLoadError::NoProcessSlot));
});
}
}
}
}
self.proc_binaries.put(proc_binaries);
// We have iterated all discovered `ProcessBinary`s and loaded what we
// could so now we can signal that process loading is finished.
self.get_current_client().map(|client| {
client.process_loading_finished();
});
self.state.clear();
Ok(())
}
/// Check if `pb1` is blocked from running by `pb2`.
///
/// `pb2` blocks `pb1` if:
///
/// - They both have the same AppID or they both have the same ShortId, and
/// - `pb2` has a higher version number.
fn is_blocked_from_loading_by(&self, pb1: &ProcessBinary, pb2: &ProcessBinary) -> bool {
let same_app_id = self
.policy
.map_or(false, |policy| !policy.different_identifier(pb1, pb2));
let same_short_app_id = self.policy.map_or(false, |policy| {
policy.to_short_id(pb1) == policy.to_short_id(pb2)
});
let other_newer = pb2.header.get_binary_version() > pb1.header.get_binary_version();
let blocks = (same_app_id || same_short_app_id) && other_newer;
if config::CONFIG.debug_process_credentials {
debug!(
"Loading: ProcessBinary {}({:#02x}) does{} block {}({:#02x})",
pb2.header.get_package_name().unwrap_or(""),
pb2.flash.as_ptr() as usize,
if blocks { " not" } else { "" },
pb1.header.get_package_name().unwrap_or(""),
pb1.flash.as_ptr() as usize,
);
}
blocks
}
/// Check if `pb` is blocked from running by `process`.
///
/// `process` blocks `pb` if:
///
/// - They both have the same AppID, or
/// - They both have the same ShortId
///
/// Since `process` is already loaded, we only have to enforce the AppID and
/// ShortId uniqueness guarantees.
fn is_blocked_from_loading_by_process(
&self,
pb: &ProcessBinary,
process: &dyn Process,
) -> bool {
let same_app_id = self.policy.map_or(false, |policy| {
!policy.different_identifier_process(pb, process)
});
let same_short_app_id = self.policy.map_or(false, |policy| {
policy.to_short_id(pb) == process.short_app_id()
});
let blocks = same_app_id || same_short_app_id;
if config::CONFIG.debug_process_credentials {
debug!(
"Loading: Process {}({:#02x}) does{} block {}({:#02x})",
process.get_process_name(),
process.get_addresses().flash_start,
if blocks { " not" } else { "" },
pb.header.get_package_name().unwrap_or(""),
pb.flash.as_ptr() as usize,
);
}
blocks
}
////////////////////////////////////////////////////////////////////////////////
// DYNAMIC PROCESS LOADING HELPERS
////////////////////////////////////////////////////////////////////////////////
/// Scan the entire flash to populate lists of existing binaries addresses.
fn scan_flash_for_process_binaries(
&self,
flash: &'static [u8],
process_binaries_start_addresses: &mut [usize],
process_binaries_end_addresses: &mut [usize],
) -> Result<(), ()> {
fn inner_function(
flash: &'static [u8],
process_binaries_start_addresses: &mut [usize],
process_binaries_end_addresses: &mut [usize],
) -> Result<(), ProcessBinaryError> {
let flash_end = flash.as_ptr() as usize + flash.len() - 1;
let mut addresses = flash.as_ptr() as usize;
let mut index: usize = 0;
while addresses < flash_end {
let flash_offset = addresses - flash.as_ptr() as usize;
let test_header_slice = flash
.get(flash_offset..flash_offset + 8)
.ok_or(ProcessBinaryError::NotEnoughFlash)?;
let header = test_header_slice
.try_into()
.or(Err(ProcessBinaryError::NotEnoughFlash))?;
let (_version, header_length, app_length) =
match tock_tbf::parse::parse_tbf_header_lengths(header) {
Ok((v, hl, el)) => (v, hl, el),
Err(tock_tbf::types::InitialTbfParseError::InvalidHeader(app_length)) => {
(0, 0, app_length)
}
Err(tock_tbf::types::InitialTbfParseError::UnableToParse) => {
return Ok(());
}
};
let app_flash = flash
.get(flash_offset..flash_offset + app_length as usize)
.ok_or(ProcessBinaryError::NotEnoughFlash)?;
let app_header = flash
.get(flash_offset..flash_offset + header_length as usize)
.ok_or(ProcessBinaryError::NotEnoughFlash)?;
let remaining_flash = flash
.get(flash_offset + app_flash.len()..)
.ok_or(ProcessBinaryError::NotEnoughFlash)?;
// Get the rest of the header. The `remaining_header` variable
// will continue to hold the remainder of the header we have
// not processed.
let remaining_header = app_header
.get(16..)
.ok_or(ProcessBinaryError::NotEnoughFlash)?;
if remaining_header.len() == 0 {
// This is a padding app.
if config::CONFIG.debug_load_processes {
debug!("Is padding!");
}
} else {
// This is an app binary, add it to the pb arrays.
process_binaries_start_addresses[index] = app_flash.as_ptr() as usize;
process_binaries_end_addresses[index] =
app_flash.as_ptr() as usize + app_length as usize;
if config::CONFIG.debug_load_processes {
debug!(
"[Metadata] Process binary start address at index {}: {:#010x}, with end_address {:#010x}",
index,
process_binaries_start_addresses[index],
process_binaries_end_addresses[index]
);
}
index += 1;
if index > process_binaries_start_addresses.len() - 1 {
return Err(ProcessBinaryError::NotEnoughFlash);
}
}
addresses = remaining_flash.as_ptr() as usize;
}
Ok(())
}
inner_function(
flash,
process_binaries_start_addresses,
process_binaries_end_addresses,
)
.or(Err(()))
}
/// Helper function to find the next potential aligned address for the
/// new app with size `app_length` assuming Cortex-M alignment rules.
fn find_next_cortex_m_aligned_address(&self, address: usize, app_length: usize) -> usize {
let remaining = address % app_length;
if remaining == 0 {
address
} else {
address + (app_length - remaining)
}
}
/// Function to compute the address for a new app with size `app_size`.
fn compute_new_process_binary_address(
&self,
app_size: usize,
process_binaries_start_addresses: &mut [usize],
process_binaries_end_addresses: &mut [usize],
) -> usize {
let mut start_count = 0;
let mut end_count = 0;
// Remove zeros from addresses in place.
for i in 0..process_binaries_start_addresses.len() {
if process_binaries_start_addresses[i] != 0 {
process_binaries_start_addresses[start_count] = process_binaries_start_addresses[i];
start_count += 1;
}
}
for i in 0..process_binaries_end_addresses.len() {
if process_binaries_end_addresses[i] != 0 {
process_binaries_end_addresses[end_count] = process_binaries_end_addresses[i];
end_count += 1;
}
}
// If there is only one application in flash:
if start_count == 1 {
let potential_address = self
.find_next_cortex_m_aligned_address(process_binaries_end_addresses[0], app_size);
return potential_address;
}
// Otherwise, iterate through the sorted start and end addresses to find gaps for the new app.
for i in 0..start_count - 1 {
let gap_start = process_binaries_end_addresses[i];
let gap_end = process_binaries_start_addresses[i + 1];
// Ensure gap_end is valid (skip zeros - these indicate there are no process binaries).
if gap_end == 0 {
continue;
}
// If there is a valid gap, i.e., (gap_end > gap_start), check alignment.
if gap_end > gap_start {
let potential_address =
self.find_next_cortex_m_aligned_address(gap_start, app_size);
if potential_address + app_size < gap_end {
return potential_address;
}
}
}
// If no gaps found, check after the last app.
let last_app_end_address = process_binaries_end_addresses[end_count - 1];
let potential_address =
self.find_next_cortex_m_aligned_address(last_app_end_address, app_size);
potential_address
}
/// This function checks if there is a need to pad either before or after
/// the new app to preserve the linked list.
///
/// When do we pad?
///
/// 1. When there is a binary located in flash after the new app but
/// not immediately after, we need to add padding between the new
/// app and the existing app.
/// 2. Due to MPU alignment, the new app may be similarly placed not
/// immediately after an existing process, in that case, we need to add
/// padding between the previous app and the new app.
/// 3. If both the above conditions are met, we add both a prepadding and a
/// postpadding.
/// 4. If either of these conditions are not met, we don't pad.
///
/// Change checks against process binaries instead of processes?
fn compute_padding_requirement_and_neighbors(
&self,
new_app_start_address: usize,
app_length: usize,
process_binaries_start_addresses: &[usize],
process_binaries_end_addresses: &[usize],
) -> (PaddingRequirement, usize, usize) {
// The end address of our newly loaded application.
let new_app_end_address = new_app_start_address + app_length;
// To store the address until which we need to write the padding app.
let mut next_app_start_addr = 0;
// To store the address from which we need to write the padding app.
let mut previous_app_end_addr = 0;
let mut padding_requirement: PaddingRequirement = PaddingRequirement::None;
// We compute the closest neighbor to our app such that:
//
// 1. If the new app is placed in between two existing binaries, we
// compute the closest located binaries.
// 2. Once we compute these values, we determine if we need to write a
// pre pad header, or a post pad header, or both.
// 3. If there are no apps after ours in the process binary array, we don't
// do anything.
// Postpad requirement.
if let Some(next_closest_neighbor) = process_binaries_start_addresses
.iter()
.filter(|&&x| x > new_app_end_address - 1)
.min()
{
// We found the next closest app in flash.
next_app_start_addr = *next_closest_neighbor;
if next_app_start_addr != 0 {
padding_requirement = PaddingRequirement::PostPad;
}
} else {
if config::CONFIG.debug_load_processes {
debug!("No App Found after the new app so not adding post padding.");
}
}
// Prepad requirement.
if let Some(previous_closest_neighbor) = process_binaries_end_addresses
.iter()
.filter(|&&x| x < new_app_start_address + 1)
.max()
{
// We found the previous closest app in flash.
previous_app_end_addr = *previous_closest_neighbor;
if new_app_start_address - previous_app_end_addr != 0 {
if padding_requirement == PaddingRequirement::PostPad {
padding_requirement = PaddingRequirement::PreAndPostPad;
} else {
padding_requirement = PaddingRequirement::PrePad;
}
}
} else {
if config::CONFIG.debug_load_processes {
debug!("No Previous App Found, so not padding before the new app.");
}
}
(
padding_requirement,
previous_app_end_addr,
next_app_start_addr,
)
}
/// This function scans flash, checks for, and returns an address that follows alignment rules given
/// an app size of `new_app_size`.
fn check_flash_for_valid_address(
&self,
new_app_size: usize,
pb_start_address: &mut [usize],
pb_end_address: &mut [usize],
) -> Result<usize, ProcessBinaryError> {
let total_flash = self.flash_bank.get();
let total_flash_start = total_flash.as_ptr() as usize;
let total_flash_end = total_flash_start + total_flash.len() - 1;
match self.scan_flash_for_process_binaries(total_flash, pb_start_address, pb_end_address) {
Ok(()) => {
if config::CONFIG.debug_load_processes {
debug!("Successfully scanned flash");
}
let new_app_address = self.compute_new_process_binary_address(
new_app_size,
pb_start_address,
pb_end_address,
);
if new_app_address + new_app_size - 1 > total_flash_end {
Err(ProcessBinaryError::NotEnoughFlash)
} else {
Ok(new_app_address)
}
}
Err(()) => Err(ProcessBinaryError::NotEnoughFlash),
}
}
/// Function to check if the object with address `offset` of size `length` lies
/// within flash bounds.
pub fn check_if_within_flash_bounds(&self, offset: usize, length: usize) -> bool {
let flash = self.flash_bank.get();
let flash_end = flash.as_ptr() as usize + flash.len() - 1;
(flash_end - offset) >= length
}
/// Function to compute an available address for the new application binary.
pub fn check_flash_for_new_address(
&self,
new_app_size: usize,
) -> Result<(usize, PaddingRequirement, usize, usize), ProcessBinaryError> {
const MAX_PROCS: usize = 10;
let mut pb_start_address: [usize; MAX_PROCS] = [0; MAX_PROCS];
let mut pb_end_address: [usize; MAX_PROCS] = [0; MAX_PROCS];
match self.check_flash_for_valid_address(
new_app_size,
&mut pb_start_address,
&mut pb_end_address,
) {
Ok(app_address) => {
let (pr, prev_app_addr, next_app_addr) = self
.compute_padding_requirement_and_neighbors(
app_address,
new_app_size,
&pb_start_address,
&pb_end_address,
);
let (padding_requirement, previous_app_end_addr, next_app_start_addr) =
(pr, prev_app_addr, next_app_addr);
Ok((
app_address,
padding_requirement,
previous_app_end_addr,
next_app_start_addr,
))
}
Err(e) => Err(e),
}
}
/// Function to check if the app binary at address `app_address` is valid.
fn check_new_binary_validity(&self, app_address: usize) -> bool {
let flash = self.flash_bank.get();
// Pass the first eight bytes of the tbfheader to parse out the
// length of the tbf header and app. We then use those values to see
// if we have enough flash remaining to parse the remainder of the
// header.
let binary_header = match flash.get(app_address..app_address + 8) {
Some(slice) if slice.len() == 8 => slice,
_ => return false, // Ensure exactly 8 bytes are available
};
let binary_header_array: &[u8; 8] = match binary_header.try_into() {
Ok(arr) => arr,
Err(_) => return false,
};
match tock_tbf::parse::parse_tbf_header_lengths(binary_header_array) {
Ok((_version, _header_length, _entry_length)) => true,
Err(tock_tbf::types::InitialTbfParseError::InvalidHeader(_entry_length)) => false,
Err(tock_tbf::types::InitialTbfParseError::UnableToParse) => false,
}
}
/// Function to start loading the new application at address `app_address` with size
/// `app_size`.
pub fn load_new_process_binary(
&self,
app_address: usize,
app_size: usize,
) -> Result<(), ProcessLoadError> {
let flash = self.flash_bank.get();
let process_address = app_address - flash.as_ptr() as usize;
let process_flash = flash.get(process_address..process_address + app_size);
let result = self.check_new_binary_validity(process_address);
match result {
true => {
if let Some(flash) = process_flash {
self.flash.set(flash);
} else {
return Err(ProcessLoadError::BinaryError(
ProcessBinaryError::TbfHeaderNotFound,
));
}
self.state
.set(SequentialProcessLoaderMachineState::DiscoverProcessBinaries);
self.run_mode
.set(SequentialProcessLoaderMachineRunMode::RuntimeMode);
// Start an asynchronous flow so we can issue a callback on error.
self.deferred_call.set();
Ok(())
}
false => Err(ProcessLoadError::BinaryError(
ProcessBinaryError::TbfHeaderNotFound,
)),
}
}
}
impl<'a, C: Chip, D: ProcessStandardDebug> ProcessLoadingAsync<'a>
for SequentialProcessLoaderMachine<'a, C, D>
{
fn set_client(&self, client: &'a dyn ProcessLoadingAsyncClient) {
self.boot_client.set(client);
}
fn set_policy(&self, policy: &'a dyn AppIdPolicy) {
self.policy.replace(policy);
}
fn start(&self) {
self.state
.set(SequentialProcessLoaderMachineState::DiscoverProcessBinaries);
self.run_mode
.set(SequentialProcessLoaderMachineRunMode::BootMode);
// Start an asynchronous flow so we can issue a callback on error.
self.deferred_call.set();
}
}
impl<C: Chip, D: ProcessStandardDebug> DeferredCallClient
for SequentialProcessLoaderMachine<'_, C, D>
{
fn handle_deferred_call(&self) {
// We use deferred calls to start the operation in the async loop.
match self.state.get() {
Some(SequentialProcessLoaderMachineState::DiscoverProcessBinaries) => {
self.load_and_check();
}
Some(SequentialProcessLoaderMachineState::LoadProcesses) => {
let ret = self.load_process_objects();
match ret {
Ok(()) => {}
Err(()) => {
// If this failed for some reason, we still need to
// signal that process loading has finished.
self.get_current_client().map(|client| {
client.process_loading_finished();
});
}
}
}
None => {}
}
}
fn register(&'static self) {
self.deferred_call.register(self);
}
}
impl<C: Chip, D: ProcessStandardDebug> crate::process_checker::ProcessCheckerMachineClient
for SequentialProcessLoaderMachine<'_, C, D>
{
fn done(
&self,
process_binary: ProcessBinary,
result: Result<Option<AcceptedCredential>, crate::process_checker::ProcessCheckError>,
) {
// Check if this process was approved by the checker.
match result {
Ok(optional_credential) => {
if config::CONFIG.debug_load_processes {
debug!(
"Loading: Check succeeded for process {}",
process_binary.header.get_package_name().unwrap_or("")
);
}
// Save the checked process binary now that we know it is valid.
match self.find_open_process_binary_slot() {
Some(index) => {
self.proc_binaries.map(|proc_binaries| {
process_binary.credential.insert(optional_credential);
proc_binaries[index] = Some(process_binary);
});
}
None => {
self.get_current_client().map(|client| {
client.process_loaded(Err(ProcessLoadError::NoProcessSlot));
});
}
}
}
Err(e) => {
if config::CONFIG.debug_load_processes {
debug!(
"Loading: Process {} check failed {:?}",
process_binary.header.get_package_name().unwrap_or(""),
e
);
}
// Signal error and call try next
self.get_current_client().map(|client| {
client.process_loaded(Err(ProcessLoadError::CheckError(e)));
});
}
}
// Try to load the next process in flash.
self.deferred_call.set();
}
}