kernel/dynamic_binary_storage.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2024.
//! Dynamic Binary Flasher for application loading and updating at runtime.
//!
//! These functions facilitate dynamic application flashing and process creation
//! during runtime without requiring the user to restart the device.
use core::cell::Cell;
use crate::config;
use crate::debug;
use crate::deferred_call::{DeferredCall, DeferredCallClient};
use crate::hil::nonvolatile_storage::{NonvolatileStorage, NonvolatileStorageClient};
use crate::platform::chip::Chip;
use crate::process::ProcessLoadingAsyncClient;
use crate::process_loading::{
PaddingRequirement, ProcessLoadError, SequentialProcessLoaderMachine,
};
use crate::process_standard::ProcessStandardDebug;
use crate::utilities::cells::{OptionalCell, TakeCell};
use crate::utilities::leasable_buffer::SubSliceMut;
use crate::ErrorCode;
/// Expected buffer length for storing application binaries.
pub const BUF_LEN: usize = 512;
/// The number of bytes in the TBF header for a padding app.
const PADDING_TBF_HEADER_LENGTH: usize = 16;
#[derive(Clone, Copy, PartialEq)]
pub enum State {
Idle,
Setup,
AppWrite,
Load,
Abort,
PaddingWrite,
Fail,
}
/// Addresses of where the new process will be stored.
#[derive(Clone, Copy, Default)]
struct ProcessLoadMetadata {
new_app_start_addr: usize,
new_app_length: usize,
previous_app_end_addr: usize,
next_app_start_addr: usize,
padding_requirement: PaddingRequirement,
setup_padding: bool,
}
/// This interface supports flashing binaries at runtime.
pub trait DynamicBinaryStore {
/// Call to request flashing a new binary.
///
/// This informs the kernel we want to load a process, and the size of the
/// entire process binary. The kernel will try to find a suitable location
/// in flash to store said process.
///
/// Return value:
/// - `Ok(length)`: If there is a place to load the
/// process, the function will return `Ok()` with the size of the region
/// to store the process.
/// - `Err(ErrorCode)`: If there is nowhere to store the process a suitable
/// `ErrorCode` will be returned.
fn setup(&self, app_length: usize) -> Result<usize, ErrorCode>;
/// Instruct the kernel to write data to the flash.
///
/// `offset` is where to start writing within the region allocated
/// for the new process binary from the `setup()` call.
///
/// The caller must write the first 8 bytes of the process with valid header
/// data. Writes must either be after the first 8 bytes or include the
/// entire first 8 bytes.
///
/// Returns an error if the write is outside of the permitted region or is
/// writing an invalid header.
fn write(&self, buffer: SubSliceMut<'static, u8>, offset: usize) -> Result<(), ErrorCode>;
/// Signal to the kernel that the requesting process is done writing the new
/// binary.
fn finalize(&self) -> Result<(), ErrorCode>;
/// Call to abort the setup/writing process.
fn abort(&self) -> Result<(), ErrorCode>;
/// Sets a client for the SequentialDynamicBinaryStore Object
///
/// When the client operation is done, it calls the `setup_done()`,
/// `write_done()` and `abort_done()` functions.
fn set_storage_client(&self, client: &'static dyn DynamicBinaryStoreClient);
}
/// The callback for dynamic binary flashing.
pub trait DynamicBinaryStoreClient {
/// Any setup work is done and we are ready to write the process binary.
fn setup_done(&self, result: Result<(), ErrorCode>);
/// The provided app binary buffer has been stored.
fn write_done(&self, result: Result<(), ErrorCode>, buffer: &'static mut [u8], length: usize);
/// The kernel has successfully finished finalizing the new app and is ready
/// to move to the `load()` phase.
fn finalize_done(&self, result: Result<(), ErrorCode>);
/// Canceled any setup or writing operation and freed up reserved space.
fn abort_done(&self, result: Result<(), ErrorCode>);
}
/// This interface supports loading processes at runtime.
pub trait DynamicProcessLoad {
/// Call to request kernel to load a new process.
fn load(&self) -> Result<(), ErrorCode>;
/// Sets a client for the SequentialDynamicProcessLoading Object
///
/// When the client operation is done, it calls the `load_done()`
/// function.
fn set_load_client(&self, client: &'static dyn DynamicProcessLoadClient);
}
/// The callback for dynamic binary flashing.
pub trait DynamicProcessLoadClient {
/// The new app has been loaded.
fn load_done(&self, result: Result<(), ProcessLoadError>);
}
/// Dynamic process loading machine.
pub struct SequentialDynamicBinaryStorage<
'a,
'b,
C: Chip + 'static,
D: ProcessStandardDebug + 'static,
F: NonvolatileStorage<'b>,
> {
flash_driver: &'b F,
loader_driver: &'a SequentialProcessLoaderMachine<'a, C, D>,
buffer: TakeCell<'static, [u8]>,
storage_client: OptionalCell<&'static dyn DynamicBinaryStoreClient>,
load_client: OptionalCell<&'static dyn DynamicProcessLoadClient>,
process_metadata: OptionalCell<ProcessLoadMetadata>,
state: Cell<State>,
deferred_call: DeferredCall,
}
impl<'a, 'b, C: Chip + 'static, D: ProcessStandardDebug + 'static, F: NonvolatileStorage<'b>>
SequentialDynamicBinaryStorage<'a, 'b, C, D, F>
{
pub fn new(
flash_driver: &'b F,
loader_driver: &'a SequentialProcessLoaderMachine<'a, C, D>,
buffer: &'static mut [u8],
) -> Self {
Self {
flash_driver,
loader_driver,
buffer: TakeCell::new(buffer),
storage_client: OptionalCell::empty(),
load_client: OptionalCell::empty(),
process_metadata: OptionalCell::empty(),
state: Cell::new(State::Idle),
deferred_call: DeferredCall::new(),
}
}
/// Function to reset variables and states.
fn reset_process_loading_metadata(&self) {
self.state.set(State::Idle);
self.process_metadata.take();
}
/// This function checks whether the new app will fit in the bounds dictated
/// by the start address and length provided during the setup phase. This
/// function then also computes where in flash the data should be written
/// based on whether the call is coming during the app writing phase, or the
/// padding phase.
///
/// This function returns the physical address in flash where the write is
/// supposed to happen.
fn compute_address(&self, offset: usize, length: usize) -> Result<usize, ErrorCode> {
let mut new_app_len: usize = 0;
let mut new_app_addr: usize = 0;
if let Some(metadata) = self.process_metadata.get() {
new_app_addr = metadata.new_app_start_addr;
new_app_len = metadata.new_app_length;
}
match self.state.get() {
State::AppWrite => {
// Check if there is an overflow while adding length and offset.
match offset.checked_add(length) {
Some(result) => {
// Check if the new app is trying to write beyond
// the bounds of the flash region allocated to it.
if result > new_app_len {
// This means the app is out of bounds.
Err(ErrorCode::INVAL)
} else {
// We compute the new address to write the app
// binary segment.
Ok(offset + new_app_addr)
}
}
None => Err(ErrorCode::INVAL),
}
}
// If we are going to write the padding header, we already know
// where to write in flash, so we don't have to add the start
// address
State::Setup | State::Load | State::PaddingWrite | State::Abort => Ok(offset),
// We aren't supposed to be able to write unless we are in one of
// the first two write states
_ => Err(ErrorCode::FAIL),
}
}
/// Compute the physical address where we should write the data and then
/// write it.
fn write_buffer(
&self,
user_buffer: SubSliceMut<'static, u8>,
offset: usize,
) -> Result<(), ErrorCode> {
let length = user_buffer.len();
// Take the buffer to perform tbf header validation and write with.
let buffer = user_buffer.take();
let physical_address = self.compute_address(offset, length)?;
// The kernel needs to check if the app is trying to write/overwrite the
// header. So the app can only write to the first 8 bytes if the app is
// writing all 8 bytes. Else, the kernel must raise an error. The app is
// not allowed to write from say, offset 4 because we have to ensure the
// validity of the header.
//
// This means the app is trying to manipulate the space where the TBF
// header should go. Ideally, we want the app to only write the complete
// set of 8 bytes which is used to determine if the header is valid. We
// don't want apps to do this, so we return an error.
if (offset == 0 && length < 8) || (offset != 0 && offset < 8) {
return Err(ErrorCode::INVAL);
}
// Check if we are writing the start of the TBF header.
//
// The app is not allowed to manipulate parts of the TBF header, so if
// it is trying to write at the very beginning of the promised flash
// region, we require the app writes the entire 8 bytes of the header.
// This header is then checked for validity.
if offset == 0 {
// Pass the first eight bytes of the tbf header to parse out the
// length of the header and app. We then use those values to see if
// the app is going to be valid.
let test_header_slice = buffer.get(0..8).ok_or(ErrorCode::INVAL)?;
let header = test_header_slice.try_into().or(Err(ErrorCode::FAIL))?;
let (_version, _header_length, entry_length) =
match tock_tbf::parse::parse_tbf_header_lengths(header) {
Ok((v, hl, el)) => (v, hl, el),
Err(tock_tbf::types::InitialTbfParseError::InvalidHeader(_entry_length)) => {
// If we have an invalid header, so we return an error
return Err(ErrorCode::INVAL);
}
Err(tock_tbf::types::InitialTbfParseError::UnableToParse) => {
// If we could not parse the header, then that's an
// issue. We return an Error.
return Err(ErrorCode::INVAL);
}
};
// Check if the length in the header is matching what the app
// requested during the setup phase also check if the kernel
// version matches the version indicated in the new application.
let mut new_app_len = 0;
if let Some(metadata) = self.process_metadata.get() {
new_app_len = metadata.new_app_length;
}
if entry_length as usize != new_app_len {
return Err(ErrorCode::INVAL);
}
}
self.flash_driver.write(buffer, physical_address, length)
}
/// Function to generate the padding header to append after the new app.
/// This header is created and written to ensure the integrity of the
/// processes linked list
fn write_padding_app(&self, padding_app_length: usize, offset: usize) -> Result<(), ErrorCode> {
// Write the header into the array
self.buffer.map(|buffer| {
// First two bytes are the TBF version (2).
buffer[0] = 2;
buffer[1] = 0;
// The next two bytes are the header length (fixed to 16 bytes for
// padding).
buffer[2] = (PADDING_TBF_HEADER_LENGTH & 0xff) as u8;
buffer[3] = ((PADDING_TBF_HEADER_LENGTH >> 8) & 0xff) as u8;
// The next 4 bytes are the total app length including the header.
buffer[4] = (padding_app_length & 0xff) as u8;
buffer[5] = ((padding_app_length >> 8) & 0xff) as u8;
buffer[6] = ((padding_app_length >> 16) & 0xff) as u8;
buffer[7] = ((padding_app_length >> 24) & 0xff) as u8;
// We set the flags to 0.
for i in 8..12 {
buffer[i] = 0x00_u8;
}
// xor of the previous values
buffer[12] = buffer[0] ^ buffer[4] ^ buffer[8];
buffer[13] = buffer[1] ^ buffer[5] ^ buffer[9];
buffer[14] = buffer[2] ^ buffer[6] ^ buffer[10];
buffer[15] = buffer[3] ^ buffer[7] ^ buffer[11];
});
self.buffer.take().map_or(Err(ErrorCode::BUSY), |buffer| {
match self
.loader_driver
.check_if_within_flash_bounds(offset, PADDING_TBF_HEADER_LENGTH)
{
true => {
// Write the header only if there are more than 16 bytes.
// available in the flash.
let mut padding_slice = SubSliceMut::new(buffer);
padding_slice.slice(..PADDING_TBF_HEADER_LENGTH);
// We are only writing the header, so 16 bytes is enough.
self.write_buffer(padding_slice, offset)
}
false => Err(ErrorCode::NOMEM),
}
})
}
}
impl<'b, C: Chip, D: ProcessStandardDebug, F: NonvolatileStorage<'b>> DeferredCallClient
for SequentialDynamicBinaryStorage<'_, 'b, C, D, F>
{
fn handle_deferred_call(&self) {
// We use deferred call to signal the completion of finalize
self.storage_client.map(|client| {
client.finalize_done(Ok(()));
});
}
fn register(&'static self) {
self.deferred_call.register(self);
}
}
/// This is the callback client for the underlying physical storage driver.
impl<'b, C: Chip + 'static, D: ProcessStandardDebug + 'static, F: NonvolatileStorage<'b>>
NonvolatileStorageClient for SequentialDynamicBinaryStorage<'_, 'b, C, D, F>
{
fn read_done(&self, _buffer: &'static mut [u8], _length: usize) {
// We will never use this, but we need to implement this anyway.
unimplemented!();
}
fn write_done(&self, buffer: &'static mut [u8], length: usize) {
match self.state.get() {
State::AppWrite => {
self.state.set(State::AppWrite);
// Switch on which user generated this callback and trigger
// client callback.
self.storage_client.map(|client| {
client.write_done(Ok(()), buffer, length);
});
}
State::PaddingWrite => {
// Replace the buffer after the padding is written.
self.reset_process_loading_metadata();
self.buffer.replace(buffer);
}
State::Fail => {
// If we failed at any of writing, we want to set the state to
// PaddingWrite so that the callback after writing the padding
// app will get triggererd.
self.buffer.replace(buffer);
if let Some(metadata) = self.process_metadata.get() {
let _ = self
.write_padding_app(metadata.new_app_length, metadata.new_app_start_addr);
}
// Clear all metadata specific to this load.
self.reset_process_loading_metadata();
}
State::Setup => {
// We have finished writing the post app padding.
self.buffer.replace(buffer);
if let Some(mut metadata) = self.process_metadata.get() {
if !metadata.setup_padding {
// Write padding header to the beginning of the new app address.
// This ensures that the linked list is not broken in the event of a
// powercycle before the app is fully written and loaded.
metadata.setup_padding = true;
let _ = self.write_padding_app(
metadata.new_app_length,
metadata.new_app_start_addr,
);
self.process_metadata.set(metadata);
} else {
self.state.set(State::AppWrite);
// Let the client know we are done setting up.
self.storage_client.map(|client| {
client.setup_done(Ok(()));
});
}
}
}
State::Load => {
// We finished writing pre-padding and we need to Load the app.
self.buffer.replace(buffer);
self.storage_client.map(|client| {
client.finalize_done(Ok(()));
});
}
State::Abort => {
self.buffer.replace(buffer);
// Reset metadata and let client know we are done aborting.
self.reset_process_loading_metadata();
self.storage_client.map(|client| {
client.abort_done(Ok(()));
});
}
State::Idle => {
self.buffer.replace(buffer);
}
}
}
}
/// Callback client for the async process loader
impl<'b, C: Chip + 'static, D: ProcessStandardDebug + 'static, F: NonvolatileStorage<'b>>
ProcessLoadingAsyncClient for SequentialDynamicBinaryStorage<'_, 'b, C, D, F>
{
fn process_loaded(&self, result: Result<(), ProcessLoadError>) {
self.load_client.map(|client| {
client.load_done(result);
});
}
fn process_loading_finished(&self) {}
}
/// Storage interface exposed to the app_loader capsule
impl<'b, C: Chip + 'static, D: ProcessStandardDebug + 'static, F: NonvolatileStorage<'b>>
DynamicBinaryStore for SequentialDynamicBinaryStorage<'_, 'b, C, D, F>
{
fn set_storage_client(&self, client: &'static dyn DynamicBinaryStoreClient) {
self.storage_client.set(client);
}
fn setup(&self, app_length: usize) -> Result<usize, ErrorCode> {
self.process_metadata.set(ProcessLoadMetadata::default());
if self.state.get() == State::Idle {
self.state.set(State::Setup);
match self.loader_driver.check_flash_for_new_address(app_length) {
Ok((
new_app_start_address,
padding_requirement,
previous_app_end_addr,
next_app_start_addr,
)) => {
if let Some(mut metadata) = self.process_metadata.get() {
metadata.new_app_start_addr = new_app_start_address;
metadata.new_app_length = app_length;
metadata.previous_app_end_addr = previous_app_end_addr;
metadata.next_app_start_addr = next_app_start_addr;
metadata.padding_requirement = padding_requirement;
self.process_metadata.set(metadata);
}
match padding_requirement {
// If we decided we need to write a padding app after
// the new app, we go ahead and do it.
PaddingRequirement::PostPad | PaddingRequirement::PreAndPostPad => {
// Calculating the distance between our app and
// either the next app.
let new_app_end_address = new_app_start_address + app_length;
let post_pad_length = next_app_start_addr - new_app_end_address;
let padding_result =
self.write_padding_app(post_pad_length, new_app_end_address);
let _ = match padding_result {
Ok(()) => Ok(()),
Err(e) => {
// This means we were unable to write the
// padding app.
self.reset_process_loading_metadata();
Err(e)
}
};
}
// Otherwise we let the client know we are done with the
// setup, and we are ready to write the app to flash.
PaddingRequirement::None | PaddingRequirement::PrePad => {
if let Some(mut metadata) = self.process_metadata.get() {
if !metadata.setup_padding {
// Write padding header to the beginning of the new app address.
// This ensures that the linked list is not broken in the event of a
// powercycle before the app is fully written and loaded.
metadata.setup_padding = true;
let _ = self.write_padding_app(
metadata.new_app_length,
metadata.new_app_start_addr,
);
self.process_metadata.set(metadata);
}
}
}
}
Ok(app_length)
}
Err(_err) => {
// Reset the state to None because we did not find any
// available address for this app.
self.reset_process_loading_metadata();
Err(ErrorCode::FAIL)
}
}
} else {
// We are in the wrong mode of operation. Ideally we should never reach
// here, but this error exists as a failsafe. The capsule should send
// a busy error out to the userland app.
Err(ErrorCode::INVAL)
}
}
fn write(&self, buffer: SubSliceMut<'static, u8>, offset: usize) -> Result<(), ErrorCode> {
match self.state.get() {
State::AppWrite => {
let res = self.write_buffer(buffer, offset);
match res {
Ok(()) => Ok(()),
Err(e) => {
// If we fail here, let us erase the app we just wrote.
self.state.set(State::Fail);
Err(e)
}
}
}
_ => {
// We are in the wrong mode of operation. Ideally we should never reach
// here, but this error exists as a failsafe. The capsule should send
// a busy error out to the userland app.
Err(ErrorCode::INVAL)
}
}
}
fn finalize(&self) -> Result<(), ErrorCode> {
match self.state.get() {
State::AppWrite => {
if let Some(metadata) = self.process_metadata.get() {
match metadata.padding_requirement {
// If we decided we need to write a padding app before the new
// app, we go ahead and do it.
PaddingRequirement::PrePad | PaddingRequirement::PreAndPostPad => {
// Calculate the distance between our app and the previous
// app.
let previous_app_end_addr = metadata.previous_app_end_addr;
let pre_pad_length =
metadata.new_app_start_addr - previous_app_end_addr;
self.state.set(State::Load);
let padding_result =
self.write_padding_app(pre_pad_length, previous_app_end_addr);
match padding_result {
Ok(()) => {
if config::CONFIG.debug_load_processes {
debug!("Successfully writing prepadding app");
}
Ok(())
}
Err(_e) => {
// This means we were unable to write the padding
// app.
self.reset_process_loading_metadata();
Err(ErrorCode::FAIL)
}
}
}
// We should never reach here if we are not writing a prepad
// app.
PaddingRequirement::None | PaddingRequirement::PostPad => {
if config::CONFIG.debug_load_processes {
debug!("No PrePad app to write.");
}
self.state.set(State::Load);
self.deferred_call.set();
Ok(())
}
}
} else {
Err(ErrorCode::INVAL)
}
}
_ => Err(ErrorCode::INVAL),
}
}
fn abort(&self) -> Result<(), ErrorCode> {
match self.state.get() {
State::Setup | State::AppWrite => {
self.state.set(State::Abort);
if let Some(metadata) = self.process_metadata.get() {
// Write padding header to the beginning of the new app address.
// This ensures that the flash space is reclaimed for future use.
match self
.write_padding_app(metadata.new_app_length, metadata.new_app_start_addr)
{
Ok(()) => Ok(()),
// If abort() returns ErrorCode::BUSY,
// the userland app is expected to retry abort.
Err(_) => Err(ErrorCode::BUSY),
}
} else {
Err(ErrorCode::FAIL)
}
}
_ => {
// We are in the wrong mode of operation. Ideally we should never reach
// here, but this error exists as a failsafe. The capsule should send
// a busy error out to the userland app.
Err(ErrorCode::INVAL)
}
}
}
}
/// Loading interface exposed to the app_loader capsule
impl<'b, C: Chip + 'static, D: ProcessStandardDebug + 'static, F: NonvolatileStorage<'b>>
DynamicProcessLoad for SequentialDynamicBinaryStorage<'_, 'b, C, D, F>
{
fn set_load_client(&self, client: &'static dyn DynamicProcessLoadClient) {
self.load_client.set(client);
}
fn load(&self) -> Result<(), ErrorCode> {
// We have finished writing the last user data segment, next step is to
// load the process.
match self.state.get() {
State::Load => {
if let Some(metadata) = self.process_metadata.get() {
let _ = match self.loader_driver.load_new_process_binary(
metadata.new_app_start_addr,
metadata.new_app_length,
) {
Ok(()) => Ok::<(), ProcessLoadError>(()),
Err(_e) => {
self.reset_process_loading_metadata();
return Err(ErrorCode::FAIL);
}
};
} else {
self.reset_process_loading_metadata();
return Err(ErrorCode::FAIL);
}
self.reset_process_loading_metadata();
Ok(())
}
_ => Err(ErrorCode::INVAL),
}
}
}